Analisis Sentimen Pada Ulasan Aplikasi Home Credit Dengan Metode SVM dan K-NN
DOI:
https://doi.org/10.70052/jka.v1i4.50Keywords:
Analisis Sentimen, Home Credit, Support Vector Machine, K-Nearest NeighborAbstract
Dalam era teknologi, mencari pembiayaan finansial semakin mudah melalui aplikasi mobile seperti Home Credit. Aplikasi ini telah diunduh oleh lebih dari 10 juta pengguna Android dengan peringkat keseluruhan 4,4 di Google Play Store. Untuk membantu meninjau aplikasi, pengguna dapat memberikan ulasan dan penilaian di Google Play Store. Namun, dengan banyaknya ulasan, diperlukan analisis sentimen untuk mempermudah pemaha man. Dalam penelitian ini, dilakukan analisis sentimen menggunakan metode Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN) pada data ulasan dari Google Play Store. Data yang diambil berjumlah 2.845 dengan informasi tentang skor dan komentar. Sentimen positif dan negatif ditentukan berdasarkan skor, dengan skor 4 dan 5 untuk sentimen positif, serta skor 1, 2, dan 3 untuk sentimen negatif. Setelah tahap preprocessing dan penghitungan tf-idf, dilakukan perhitungan menggunakan algoritma SVM dan KNN. Hasilnya menunjukkan bahwa metode SVM memiliki presisi 89%, recall 86%, F1-score 87%, dan akurasi 88%. Sementara metode KNN memiliki presisi 79%, recall 80%, F1-score 79%, dan akurasi 79%. Berdasarkan hasil tersebut, dapat disimpulkan bahwa metode Support Vector Machine lebih baik dalam melakukan analisis sentimen dalam penelitian ini.
In the age of technology, finding finance has never been easier through mobile apps like Home Credit. The app has been downloaded by over 10 million Android users with an overall rating of 4.4 on the Google Play Store. To help review the app, users can leave reviews and ratings on the Google Play Store. However, with so many reviews, sentiment analysis is needed to facilitate understanding. In this study, sentiment analysis using the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) methods was conducted on review data from the Google Play Store. The data taken amounted to 2,845 with information about scores and comments. Positive and negative sentiments are determined based on scores, with scores of 4 and 5 for positive sentiments, and scores of 1, 2, and 3 for negative sentiments. After the preprocessing stage and tf-idf calculation, calculations are performed using the SVM and KNN algorithms. The results show that the SVM method has 89% precision, 86% recall, 87% F1-score, and 88% accuracy. While the KNN method has 79% precision, 80% recall, 79% F1-score, and 79% accuracy. Based on these results, it can be concluded that the Support Vector Machine method is better at performing sentiment analysis in this study.
References
I. A. Angreni, S. A. Adisasmita, M. I. Ramli, and S. Hamid, “Pengaruh Nilai K Pada Metode K-Nearest Neighbor (Knn) Terhadap Tingkat Akurasi Identifikasi Kerusakan Jalan,” Rekayasa Sipil, vol. 7, no. 2, p. 63, Jan. 2019, doi: 10.22441/jrs.2018.v07.i2.01.
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES Journal of Mathematics, vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
A. Saepudin, R. Aryanti, and E. Fitriani, “Optimasi Algoritma SVM Dan K-NN Berbasis Particle Swarm Optimization Pada Analisis Sentimen Fenomena Tagar #2019GantiPresiden,” Jurnal Teknik Komputer AMIK BSI, 2020, doi: 10.31294/jtk.v4i2.
I. S. I. Kumala, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, Dec. 2023, doi: 10.1177/0165551510388123.
I. Iwandini, A. Triayudi, and G. Soepriyono, “Sawo Manila No.61, RW.7, Pejaten Bar,” Journal of Information System Research, vol. 4, no. 2, 2023, doi: 10.47065/josh.v4i2.2937.
H. Aulia, N. Syifa, A. Nugroho, R. Firliana, P. Algoritma, and N. Bayes, “Habibi Aulia Nur Syifa Perbandingan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbors Untuk Analisis Sentimen Covid-19 Di Twitter,” Jurnal Ilmiah Informatika, 2023.
S. Chohan, A. Nugroho, A. Maezar Bayu Aji, W. Gata, and S. Nusa Mandiri, “Analisis Sentimen Aplikasi Duolingo Menggunakan Metode Naïve Bayes dan Synthetic Minority Over Sampling Technique,” Jurnal Informatika dan Komputer, vol. 22, no. 2, 2020, doi: 10.31294/p.v21i2.
D. S. Putri, A. Sentimen, U. Aplikasi, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay dengan Algoritma Support Vector Machine,” Jurnal Ilmiah Informatika, 2023.
K. Anwar, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 4, pp. 148–155, 2022, [Online]. Available: https://djournals.com/klik
F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 3, pp. 689–694, 2019, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” Jurnal Inovtek Polbeng-Seri Informatika, vol. 3, no. 1, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Arman Adiansyah, Wahyudin (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.