Deteksi Dini Stunting pada Balita Menggunakan Data Mining dengan Algoritma C4.5

Authors

  • Muhammad Regen Universitas Bina Sarana Informatika
  • Yogi Nur Alamsyah Universitas Bina Sarana Informatika
  • Rendi Lesmana Universitas Bina Sarana Informatika
  • Asima Rodame Tampubolon Universitas Bina Sarana Informatika
  • Diana Nur Hafifah Universitas Bina Sarana Informatika
  • Annida Purnamawati Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.70052/jka.v4i1.1277

Keywords:

stunting, deteksidini, algoritma C4.5, kesehatan masyarakat, machine learning

Abstract

Stunting is a serious issue affecting the growth and development of children in Indonesia, with a prevalence still high, reaching 148 million children under five. This study aims to develop an early detection model for stunting using the C4.5 decision tree algorithm, utilizing a large dataset containing 120,999 records that include attributes of age, height, and gender. The research method used is a quantitative experimental approach with data mining techniques, where the model was evaluated using 10-fold cross-validation to ensure accuracy and generalizability. The results show that the C4.5 model achieves 99.87% accuracy, with very high precision and recall, and good interpretability, making it suitable for implementation in public health systems. These findings emphasize the importance of height as a key indicator in detecting stunting and provide a basis for model integration in digital health initiatives in Indonesia. This study recommends incorporating socioeconomic and environmental attributes for more comprehensive analysis in the future.

References

Pemerintah Republik Indonesia, “Peraturan Presiden Republik Indonesia Nomor 72 Tahun 2021 Tentang Percepatan Penurunan Stunting,” 2021.

A. Soliman et al., “Early and long-term consequences of nutritional stunting: From childhood to adulthood,” Acta Biomedica, vol. 92, no. 1, Mar. 2021, doi: 10.23750/abm.v92i1.11346.

Kementerian Kesehatan Republik Indonesia, “SSGI 2024: Prevalensi Stunting Nasional Turun Menjadi 19,8%.” Accessed: Nov. 11, 2025. [Online]. Available: https://kemkes.go.id/id/ssgi-2024-prevalensi-stunting-nasional-turun-menjadi-198

UNICEF, “Climate Change and Nutrition in Indonesia. A review of the evidence for policy and programme strengthening,” United Nations Children’s Fund, Jakarta, Indonesia, 2024.

Pemerintah Republik Indonesia, “Strategi Nasional Percepatan Pencegahan dan Penurunan Stunting 2025–2029,” 2025.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. Elsevier, 2012.

J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” 1996.

R. Xsanal Hakim et al., “Penerapan Algoritma C4.5 untuk Prediksi Anak Stunting di Kota Pagar Alam,” 2024.

P. C. Algoritma, S. Lestari, R. Amanda Amalia, and S. Lestari, “Penerapan Algoritma C4.5 pada Klasifikasi Status Gizi Balita di Posyandu Desa Sukalilah Cibatu Kabupaten Garut Jawa Barat,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 177–182, 2023, doi: 10.55338/saintek.v5i1.1375.

Y. M. Brekmans Darkel, L. Ermilinda, G. Kurniawan Al Yulianto, and C. Fransiska Pacolinus, “Implementasi Model Algoritma C4.5 untuk Klasifikasi Status Stunting di Kabupaten Sikka,” 2024.

N. Baharun, N. F. M. Razi, S. Masrom, N. A. M. Yusri, and A. S. A. Rahman, “Auto Modelling for Machine Learning: A Comparison Implementation between RapidMiner and Python,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no. 5, pp. 15–27, May 2022, doi: 10.46338/ijetae0522_03.

L. Kovács and H. Ghous, “Efficiency comparison of Python and RapidMiner,” Multidiszciplináris Tudományok, vol. 10, no. 3, pp. 212–220, 2020, doi: 10.35925/j.multi.2020.3.26.

S. M. Malakouti, M. B. Menhaj, and A. A. Suratgar, “The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction,” Clean Engineering and Technology, vol. 15, Aug. 2023, doi: 10.1016/j.clet.2023.100664.

A. Mosavi, “Multiple Criteria Decision-Making Preprocessing Using Data Mining Tools,” IJCSI International Journal of Computer Science Issues, vol. 7, no. 1, 2010. [Online]. Available: www.IJCSI.org

Fakhruddin Fakhruddin and Sefrika Entas, “Perbandingan Algoritma C4.5 dan Naïve Bayes dalam Prediksi Kualitas Tidur pada Kesehatan,” Vitamin: Jurnal Ilmu Kesehatan Umum, vol. 3, no. 4, pp. 217–234, Sep. 2025, doi: 10.61132/vitamin.v3i4.1773.

Downloads

Published

02-02-2026

How to Cite

Regen, M., Alamsyah, Y. N., Lesmana, R., Tampubolon, A. R. ., Hafifah, D. N. ., & Purnamawati , A. . (2026). Deteksi Dini Stunting pada Balita Menggunakan Data Mining dengan Algoritma C4.5. Jurnal Komputer Antartika, 4(1), 1–6. https://doi.org/10.70052/jka.v4i1.1277

Issue

Section

Articles

Most read articles by the same author(s)